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Abstract

This paper compares di¤erent solution methods for computing the equilibrium

of dynamic stochastic general equilibrium (DSGE) models with recursive prefer-

ences such as those in Epstein and Zin (1989 and 1991) and stochastic volatility.

Models with these two features have recently become popular, but we know little

about the best ways to implement them numerically. To �ll this gap, we solve

the stochastic neoclassical growth model with recursive preferences and stochastic

volatility using four di¤erent approaches: second- and third-order perturbation,

Chebyshev polynomials, and value function iteration. We document the perfor-

mance of the methods in terms of computing time, implementation complexity,

and accuracy. Our main �nding is that perturbations are competitive in terms

of accuracy with Chebyshev polynomials and value function iteration while being

several orders of magnitude faster to run. Therefore, we conclude that perturba-

tion methods are an attractive approach for computing this class of problems.
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1. Introduction

This paper compares di¤erent solution methods for computing the equilibrium of dynamic sto-

chastic general equilibrium (DSGE) models with recursive preferences and stochastic volatility

(SV). Both features have become very popular in �nance and in macroeconomics as modelling

devices to account for business cycle �uctuations and asset pricing. Recursive preferences,

as those �rst proposed by Kreps and Porteus (1978) and later generalized by Epstein and

Zin (1989 and 1991) and Weil (1990), are attractive for two reasons. First, they allow us to

separate risk aversion and intertemporal elasticity of substitution (EIS). Second, they o¤er

the intuitive appeal of having preferences for early or later resolution of uncertainty (see the

reviews by Backus et al., 2004 and 2007, and Hansen et al., 2007, for further details and ref-

erences). SV generates heteroskedastic aggregate �uctuations, a basic property of many time

series such as output (see the review by Fernández-Villaverde and Rubio-Ramírez, 2010), and

adds extra �exibility in accounting for asset pricing patterns. In fact, in an in�uential paper,

Bansal and Yaron (2004) have argued that the combination of recursive preferences and SV

is the key for their proposed mechanism, long-run risk, to be successful at explaining asset

pricing.

But despite the popularity and importance of these issues, nearly nothing is known about

the numerical properties of the di¤erent solution methods that solve equilibrium models with

recursive preferences and SV. For example, we do not know how well value function iteration

(VFI) performs or how good local approximations are compared with global ones. Similarly, if

we want to estimate the model, we need to assess which solution method is su¢ ciently reliable

yet quick enough to make the exercise feasible. More important, the most common solution

algorithm in the DSGE literature, (log-) linearization, cannot be applied, since it makes us

miss the whole point of recursive preferences or SV: the resulting (log-) linear decision rules

are certainty equivalent and do not depend on risk aversion or volatility. This paper attempts

to �ll this gap in the literature, and therefore, it complements previous work by Aruoba et

al. (2006), in which a similar exercise is performed with the neoclassical growth model with

CRRA utility function and constant volatility.

We solve and simulate the model using four main approaches: perturbation (of second

and third order), Chebyshev polynomials, and VFI. By doing so, we span most of the relevant

methods in the literature. Our results provide a strong guess of how some other methods not

covered here, such as �nite elements, would work (rather similar to Chebyshev polynomials

but more computationally intensive). We report results for a benchmark calibration of the

model and for alternative calibrations that change the variance of the productivity shock,

the risk aversion, and the intertemporal elasticity of substitution. In that way, we study
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the performance of the methods both for cases close to the CRRA utility function with

constant volatility and for highly non-linear cases far away from the CRRA benchmark. For

each method, we compute decision rules, the value function, the ergodic distribution of the

economy, business cycle statistics, the welfare costs of aggregate �uctuations, and asset prices.

Also, we evaluate the accuracy of the solution by reporting Euler equation errors.

We highlight four main results from our exercise. First, all methods provide a high degree

of accuracy. Thus, researchers who stay within our set of solution algorithms can be con�dent

that their quantitative answers are sound.

Second, perturbations deliver a surprisingly high level of accuracy with considerable speed.

Both second- and third-order perturbations perform remarkably well in terms of accuracy for

the benchmark calibration, being competitive with VFI or Chebyshev polynomials. For this

calibration, a second-order perturbation that runs in a fraction of a second does nearly as

well in terms of the average Euler equation error as a VFI that takes ten hours to run. Even

in the extreme calibration with high risk aversion and high volatility of productivity shocks,

perturbation works at a more than acceptable level. Since, in practice, perturbation methods

are the only computationally feasible method to solve the medium-scale DSGE models used

for policy analysis that have dozens of state variables (as in Smets and Wouters, 2007), this

�nding has an outmost applicability. Moreover, since implementing second- and third-order

perturbations is feasible with o¤-the-shelf software like Dynare, which requires minimum

programming knowledge by the user, our �ndings may induce many researchers to explore

recursive preferences and/or SV in further detail. Two �nal advantages of perturbation are

that, often, the perturbed solution provides insights about the economics of the problem and

that it might be an excellent initial guess for VFI or for Chebyshev polynomials.

Third, Chebyshev polynomials provide a terri�c level of accuracy with reasonable compu-

tational burden. When accuracy is most required and the dimensionality of the state space

is not too high, as in our model, they are the obvious choice.

Fourth, we were disappointed by the poor performance of VFI, which, compared with

Chebyshev, could not achieve a high accuracy even with a large grid. This suggests that we

should relegate VFI to solving those problems where non-di¤erentiabilities complicate the

application of the previous methods.

The rest of the paper is organized as follows. In section 2, we present our test model.

Section 3 describes the di¤erent solution methods used to approximate the decision rules of

the model. Section 4 discusses the calibration of the model. Section 5 reports numerical

results and section 6 concludes. An appendix provides some additional details.
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2. The Stochastic Neoclassical Growth Model with Recursive Pref-

erences and SV

We use the stochastic neoclassical growth model with recursive preferences and SV in the

process for technology as our test case. We select this model for three reasons. First, it is the

workhorse of modern macroeconomics. Even more complicated New Keynesian models with

real and nominal rigidities, such as those in Woodford (2003) or Christiano et al. (2005), are

built around the core of the neoclassical growth model. Thus, any lesson learned with it is

likely to have a wide applicability. Second, the model is, except for the form of the utility

function and the process for SV, the same test case as in Aruoba et al. (2006). This provides

us with a set of results to compare to our �ndings. Three, the introduction of recursive

preferences and SV make the model both more non-linear (and hence, a challenge for di¤erent

solution algorithms) and potentially more relevant for practical use. For example, and as

mentioned in the introduction, Bansal and Yaron (2004) have emphasized the importance

of the combination of recursive preferences and time-varying volatility to account for asset

prices.

The description of the model is straightforward, and we just go through the details required

to �x notation. There is a representative household that has preferences over streams of

consumption, ct, and leisure, 1� lt, represented by a recursive function of the form:

Ut = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�� + �
�
EtU1�t+1

� 1
�

� �
1�

(1)

The parameters in these preferences include �; the discount factor, �, which controls labor

supply, , which controls risk aversion, and:

� =
1� 

1� 1
 

where  is the EIS. The parameter � is an index of the deviation with respect to the benchmark

CRRA utility function (when � = 1, we are back in that CRRA case where the inverse of the

EIS and risk aversion coincide).

The household�s budget constraint is given by:

ct + it +
bt+1

Rf
t

= wtlt + rtkt + bt

where it is investment, R
f
t is the risk-free gross interest rate, bt is the holding of an uncontin-

gent bond that pays 1 unit of consumption good at time t+ 1, wt is the wage, lt is labor, rt
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is the rental rate of capital, and kt is capital. Asset markets are complete and we could have

also included in the budget constraint the whole set of Arrow securities. Since we have a

representative household, this is not necessary because the net supply of any security is zero.

Households accumulate capital according to the law of motion kt+1 = (1� �)kt + it where �

is the depreciation rate.

The �nal good in the economy is produced by a competitive �rm with a Cobb-Douglas

technology yt = eztk�t l
1��
t where zt is the productivity level that follows:

zt = �zt�1 + e�t"t, "t � N (0; 1) :

Stationarity is the natural choice for our exercise. If we had a deterministic trend, we would

only need to adjust � in our calibration below (and the results would be nearly identical). If

we had a stochastic trend, we would need to rescale the variables by the productivity level

and solve the transformed problem. However, in this case, it is well known that the economy

�uctuates less than when � < 1 , and therefore, all solution methods would be closer, limiting

our ability to appreciate di¤erences in their performance.

The innovation "t is scaled by a SV level �t; which evolves as:

�t = (1� �)� + ��t�1 + �!t, !t � N (0; 1)

where � is the unconditional mean level of �t, � is the persistence of the processes, and �

is the standard deviation of the innovations to �t. Our speci�cation is parsimonious and it

introduces only two new parameters, � and �. At the same time, it captures some important

features of the data (see a detailed discussion in Fernández-Villaverde and Rubio-Ramírez,

2010). The combination of an exponent in the productivity process (e�t) and a level in the

evolution of �t generates interesting nonlinear dynamics. Another important point is that,

with SV, we have two innovations, an innovation to technology, "t; and an innovation to

the standard deviation of technology, !t. Finally, the economy must satisfy the aggregate

resource constraint yt = ct + it.

The de�nition of equilibrium is standard and we skip it in the interest of space. Also,

both welfare theorems hold, a fact that we will exploit by jumping back and forth between

the solution of the social planner�s problem and the competitive equilibrium. However, this is

only to simplify our derivations. It is straightforward to adapt the solution methods described

below to solve problems that are not Pareto optimal.

Thus, an alternative way to write this economy is to look at the value function repre-

sentation of the social planner�s problem in terms of its three state variables, capital kt,
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productivity zt, and volatility, �t:

V (kt; zt; �t) = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�� + �
�
EtV 1� (kt+1; zt+1; �t+1)

� 1
�

� �
1�

s.t. ct + kt+1 = eztk�t l
1��
t + (1� �) kt

zt = �zt�1 + e�t"t, "t � N (0; 1)

�t = (1� �)� + ��t�1 + �!t, !t � N (0; 1) :

Then, we can �nd the pricing kernel of the economy

mt+1 =
@Vt=@ct+1
@Vt=@ct

:

Now, note that:
@Vt
@ct

= (1� �)V
1� 1�

�
t �

(c�t (1� lt)
1��)

1�
�

ct

and:

@Vt
@ct+1

= �V
1� 1�

�
t (EtV 1�

t+1 )
1
�
�1Et

 
V �
t+1 (1� �)V

1� 1�
�

t+1 �
(1� �) (c�t+1(1� lt+1)

1��)
1�
�

ct+1

!

where in the last step we use the result regarding @Vt=@ct forwarded by one period. Cancelling

redundant terms, we get:

mt+1 =
@Vt=@ct+1
@Vt=@ct

= �

�
ct+1
ct

��(1�)
�

�1�
1� lt+1
1� lt

� (1�)(1��)
�

 
V 1�
t+1

EtV 1�
t+1

!1� 1
�

: (2)

This equation shows how the pricing kernel is a¤ected by the presence of recursive preferences.

If � = 1, the last term,  
V 1�
t+1

EtV 1�
t+1

!1� 1
�

(3)

is equal to 1 and we get back the pricing kernel of the standard CRRA case. If � 6= 1, the
pricing kernel is twisted by (3).

We identify the net return on equity with the marginal net return on investment:

Rk
t+1 = �ezt+1k��1t+1 l

1��
t+1 � �

with expected return Et
�
Rk
t+1

�
:
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3. Solution Methods

We are interested in comparing di¤erent solution methods to approximate the dynamics of

the previous model. Since the literature on computational methods is large, it would be

cumbersome to review every proposed method. Instead, we select those methods that we

�nd most promising.

Our �rst method is perturbation (introduced by Judd and Guu, 1992 and 1997 and nicely

explained in Schmitt-Grohé and Uribe, 2004). Perturbation algorithms build a Taylor series

expansion of the agents�decision rules. Often, perturbation methods are very fast and, despite

their local nature, highly accurate in a large range of values of the state variables (Aruoba et

al., 2006). This means that, in practice, perturbations are the only method that can handle

models with dozens of state variables within any reasonable amount of time. Moreover,

perturbation often provides insights into the structure of the solution and on the economics

of the model. Finally, linearization and log-linearization, the most common solution methods

for DSGE models, are particular cases of a perturbation of �rst order.

We implement a second- and a third-order perturbation of our model. A �rst-order per-

turbation is useless for our investigation: the resulting decision rules are certainty equivalent

and, therefore, they depend on  but not on  or �t. In other words, the �rst-order decision

rules of the model with recursive preferences coincide with the decision rules of the model

with CRRA preferences with the same  and � for any value of  or �t. We need to go, at

least, to second-order decision rules to have terms that depend on  or �t and, hence, allow

recursive preferences or SV to play a role. Since the accuracy of second-order decision rules

may not be high enough and, in addition, we want to explore time-varying risk premia, we

also compute a third-order perturbation. As we will document below, a third-order pertur-

bation provides enough accuracy without unnecessary complications. Thus, we do not need

to go to higher orders.

The second method is a projection algorithm with Chebyshev polynomials (Judd, 1992).

Projection algorithms build approximated decision rules that minimize a residual function

that measures the distance between the left- and right-hand side of the equilibrium conditions

of the model. Projection methods are attractive because they o¤er a global solution over the

whole range of the state space. Their main drawback is that they su¤er from an acute curse

of dimensionality that makes it challenging to extend it to models with many state variables.

Among the many di¤erent types of projection methods, Aruoba et al. (2006) show that

Chebyshev polynomials are particularly e¢ cient. Other projection methods, such as �nite

elements or parameterized expectations, tend to perform somewhat worse than Chebyshev

polynomials, and therefore, in the interest of space, we do not consider them.
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Finally, we compute the model using VFI (Epstein and Zin, 1989, show that a version of

the contraction mapping theorem holds in the value function of the problem with recursive

preferences). VFI is slow and it su¤ers as well from the curse of dimensionality, but it is

safe, reliable, and well understood. Thus, it is a natural default algorithm for the solution of

DSGE models.

3.1. Perturbation

We describe now each of the di¤erent methods in more detail. We start by explaining how to

use a perturbation approach to solve DSGE models using the value function of the household.

We are not the �rst to explore the perturbation of value function problems. Judd (1998)

already presents the idea of perturbing the value function instead of the equilibrium conditions

of a model. Unfortunately, he does not elaborate much on the topic. Schmitt-Grohé and

Uribe (2005) employ a perturbation approach to �nd a second-order approximation to the

value function that allows them to rank di¤erent �scal and monetary policies in terms of

welfare. However, we follow Binsbergen et al. (2009) in their emphasis on the generality of

the approach.1

To illustrate the procedure, we limit our exposition to deriving the second-order approx-

imation to the value function and the decision rules of the agents. Higher-order terms are

derived analogously, but the algebra becomes too cumbersome to be developed explicitly

(in our application, the symbolic algebra is undertaken by Mathematica, which automati-

cally generates Fortran 95 code that we can evaluate numerically). Hopefully, our steps will

be enough to allow the reader to understand the main thrust of the procedure and obtain

higher-order approximations by herself.

First, we rewrite the exogenous processes in terms of a perturbation parameter �,

zt = �zt�1 + �e�t"t

�t = (1� �)� + ��t�1 + ��!t:

When � = 1, which is just a normalization, we are dealing with the stochastic version of

1The perturbation method is related to Benigno and Woodford (2006) and Hansen and Sargent (1995).
Benigno and Woodford present a linear-quadratic (LQ) approximation to solve optimal policy problems when
the constraints of the problem are non-linear (see also Levine et al., 2007). This allows them to �nd the
correct local welfare ranking of di¤erent policies. Our perturbation can also deal with non-linear constraints
and obtains the correct local approximation to welfare and policies, but with the advantage that it is easily
generalizable to higher-order approximations. Hansen and Sargent (1995) modify the LQ problem to adjust
for risk. In that way, they can handle some versions of recursive utilities. Hansen and Sargent�s method,
however, requires imposing a tight functional form for future utility and to surrender the assumption that
risk-adjusted utility is separable across states of the world. Perturbation does not su¤er from those limitations.
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the model. When � = 0, we are dealing with the deterministic case with steady state kss,

zss = 0, and �ss = �. Also, it is convenient for the algebra below to de�ne a vector of states

in di¤erences with respect to the steady state, st = (kt � kss; zt�1; "t; �t�1 � �ss; !t; �), where

sit is the i � th component of this vector at time t for i 2 f1; : : : ; 6g. Then, we can write
the social planner�s value function, V (st), and the decision rules for consumption, c (st),

investment, i (st), capital, k (st), and labor, l (st), as a function of st.

Second, we note that, under di¤erentiability assumptions, the second-order Taylor ap-

proximation of the value function around st = 0 (the vectorial zero) is:

V (st) ' Vss + Vi;sss
i
t +

1

2
Vij;sss

i
ts
j
t

where:

1. Each term V:::;ss is a scalar equal to a derivative of the value function evaluated at 0:

Vss � V (0) ; Vi;ss � Vi (0) for i 2 f1; : : : ; 6g ; and Vij;ss � Vij (0) for i; j 2 f1; : : : ; 6g ;

2. We use the tensors Vi;sssit =
P6

i=1 Vi;sssi;t and Vij;sss
i
ts
j
t =

P6
i=1

P6
i=1 Vij;sssi;tsj;t, which

eliminate the symbol
P6

i=1 when no confusion arises.

We can extend this notation to higher-order derivatives of the value function. This ex-

pansion could also be performed around a di¤erent point of the state space, such as the mode

of the ergodic distribution of the state variables. In section 5, we discuss this point further.

Fernández-Villaverde et al. (2010) show that many of these terms V:::;ss are zero (for

instance, those implied by certainty equivalence in the �rst-order component). More directly

related to this paper, Binsbergen et al. (2009) demonstrate that  does not a¤ect the values

of any of the coe¢ cients except V66;ss and also that V66;ss 6= 0. This result is intuitive, since
the value function of a risk-averse agent is in general a¤ected by uncertainty and we want

to have an approximation with terms that capture this e¤ect and allow for the appropriate

welfare ranking of decision rules. Indeed, V66;ss has a straightforward interpretation. At the

deterministic steady state with � = 1 (that is, even if we are in the stochastic economy, we

just happen to be exactly at the steady state values of all the other states), we have:

V (0; 0; 0; 0; 0; 1) ' Vss +
1

2
V66;ss

Hence 1
2
V66;ss is a measure of the welfare cost of the business cycle, that is, of how much utility

changes when the variance of the productivity shocks is at steady-state value �ss instead of

zero (note that this quantity is not necessarily negative). This term is an accurate evaluation
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of the third order of the welfare cost of business cycle �uctuations because all of the third-

order terms in the approximation of the value function either have coe¢ cient values of zero

or drop when evaluated at the deterministic steady state.

This cost of the business cycle can easily be transformed into consumption equivalent

units. We can compute the percentage decrease in consumption � that will make the house-

hold indi¤erent between consuming (1� �) css units per period with certainty or ct units with

uncertainty. To do so, note that the steady-state value function is just Vss = c�ss (1� lss)
1�� ;

which implies that:

c�ss (1� lss)
1�� +

1

2
V66;ss = ((1� �) css)

� (1� lss)
1��

or:

Vss +
1

2
V66;ss = (1� �)� Vss

Then:

� = 1�
�
1 +

1

2

V66;ss
Vss

� 1
�

:

We are perturbing the value function in levels of the variables. However, there is nothing

special about levels and we could have done the same in logs (a common practice when

linearizing DSGE models) or in any other function of the states. These changes of variables

may improve the performance of perturbation (Fernández-Villaverde and Rubio-Ramírez,

2006). By doing the perturbation in levels, we are picking the most conservative case for

perturbation. Since one of the conclusions that we will reach from our numerical results is

that perturbation works surprisingly well in terms of accuracy, that conclusion will only be

reinforced by an appropriate change of variables.2

The decision rules can be expanded in the same way. For example, the second-order

approximation of the decision rule for consumption is, under di¤erentiability assumptions:

c (st) ' css + ci;sss
i
t +

1

2
cij;sss

i
ts
j
t

where we have followed the same derivative and tensor notation as before.

As with the approximation of the value function, Binsbergen et al. (2009) show that 

does not a¤ect the values of any of the coe¢ cients except c66;ss. This term is a constant that

captures precautionary behavior caused by risk. This observation tells us two facts. First, a

2This comment begets the question, nevertheless, of why we did not perform a perturbation in logs, since
many economists will �nd it more natural than using levels. Our experience with the CRRA utility case
(Aruoba et al., 2006) and some computations with recursive preferences not included in the paper suggest
that a perturbation in logs does slightly worse than a perturbation in levels.
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linear approximation to the decision rule does not depend on  (it is certainty equivalent),

and therefore, if we are interested in recursive preferences, we need to go at least to a second-

order approximation. Second, given some �xed parameter values, the di¤erence between the

second-order approximation to the decision rules of a model with CRRA preferences and a

model with recursive preferences is a constant. This constant generates a second, indirect

e¤ect, because it changes the ergodic distribution of the state variables and, hence, the

points where we evaluate the decision rules along the equilibrium path. These arguments

demonstrate how perturbation methods can provide analytic insights beyond computational

advantages and help in understanding the numerical results in Tallarini (2000). In the third-

order approximation, all of the terms on functions of �2 depend on .

Following the same steps, we can derive the decision rules for labor, investment, and

capital. In addition we have functions that give us the evolution of other variables of interest,

such as the pricing kernel or the risk-free gross interest rate Rf
t . All of these functions have

the same structure and properties regarding  as the decision rule for consumption. In the

case of functions pricing assets, the second-order approximation generates a constant risk

premium, while the third-order approximation creates a time-varying risk premium.

Once we have reached this point, there are two paths we can follow to solve for the coef-

�cients of the perturbation. The �rst procedure is to write down the equilibrium conditions

of the model plus the de�nition of the value function. Then, we take successive derivatives in

this augmented set of equilibrium conditions and solve for the unknown coe¢ cients. This ap-

proach, which we call equilibrium conditions perturbation (ECP), gets us, after n iterations,

the n-th-order approximation to the value function and to the decision rules.

A second procedure is to take derivatives of the value function with respect to states and

controls and use those derivatives to �nd the unknown coe¢ cient. This approach, which

we call value function perturbation (VFP), delivers after (n+ 1) steps, the (n+ 1)-th order

approximation to the value function and the n�th order approximation to the decision rules.3

Loosely speaking, ECP undertakes the �rst step of VFP by hand by forcing the researcher

to derive the equilibrium conditions.

The ECP approach is simpler but it relies on our ability to �nd equilibrium conditions

that do not depend on derivatives of the value function. Otherwise, we need to modify the

equilibrium conditions to include the de�nitions of the derivatives of the value function. Even

if this is possible to do (and not particularly di¢ cult), it amounts to solving a problem that

3The classical strategy of �nding a quadratic approximation of the utility function to derive a linear
decision rule is a second-order example of VFP (Anderson et al., 1996). A standard linearization of the
equilibrium conditions of a DSGE model when we add the value function to those equilibrium conditions is
a simple case of ECP. This is done, for instance, in Schmitt-Grohé and Uribe (2005).
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is equivalent to VFP. This observation is important because it is easy to postulate models

that have equilibrium conditions where we cannot get rid of all the derivatives of the value

function (for example, in problems of optimal policy design). ECP is also faster from a

computational perspective. However, VFP is only trivially more involved because �nding the

(n+ 1)-th-order approximation to the value function on top of the n-th order approximation

requires nearly no additional e¤ort.

The algorithm presented here is based on the system of equilibrium equations derived

using the ECP. In the appendix, we derive a system of equations using the VFP. We take the

�rst-order conditions of the social planner. First, with respect to consumption today:

@Vt
@ct

� �t = 0

where �t is the Lagrangian multiplier associated with the resource constraint. Second, with

respect to capital:

��t + Et�t+1
�
�ezt+1k��1t+1 l

1��
t+1 + 1� �

�
= 0:

Third, with respect to labor:

1� �

�

ct
(1� lt)

= (1� �)eztk�t l
��
t :

Then, we have Etmt+1

�
�eztk��1t+1 l

1��
t+1 + 1� �

�
= 1 where mt+1 was derived in equation (2).

Note that, as explained above, the derivatives of the value function in (2) are eliminated.

Once we substitute for the pricing kernel, the augmented equilibrium conditions are:

Vt �
�
(1� �)

�
c�t (1� lt)

1��� 1�� + �
�
EtV 1� (kt+1; zt+1)

� 1
�

� �
1�

= 0

Et

24� �ct+1
ct

� 1�
�
�1
 

V 1�
t+1

EtV 1�
t+1

!1� 1
� �
�ezt+1k��1t+1 l

1��
t+1 + 1� �

�35� 1 = 0
1� �

�

ct
(1� lt)

= (1� �)eztk�t l
��
t = 0

Et�
�
ct+1
ct

� 1�
�
�1
 

V 1�
t+1

EtV 1�
t+1

!1� 1
�

Rf
t � 1 = 0

ct + it � eztk�t l
1��
t = 0

kt+1 � it � (1� �) kt = 0

plus the law of motion for productivity and volatility. Note that all the endogenous variables
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are functions of the states and that we drop the max operator in front of the value function

because we are already evaluating it at the optimum. Thus, a more compact notation for the

previous equilibrium conditions as a function of the states is:

F (0) = 0

where F : R6 ! R8.
In steady state, mss = � and the set of equilibrium conditions simpli�es to:

Vss = c�ss (1� lss)
1���

�k��1ss l1��ss + 1� �
�
= 1=�

1� �

�

css
(1� lss)

= (1� �)k�ssl
��
ss

Rf
ss = 1=�

css + iss = k�ssl
1��
ss

iss = �kss

a system of 6 equations on 6 unknowns, Vss, css, kss, iss, lss, and Rf
ss that can be easily solved

(see the appendix for the derivations). This steady state is identical to the steady state of

the real business cycle model with a standard CRRA utility function and no SV.

To �nd the �rst-order approximation to the value function and the decision rules, we take

�rst derivatives of the function F with respect to the states st and evaluate them at 0:

Fi (0) = 0 for i 2 f1; : : : ; 6g :

This step gives us 48 di¤erent �rst derivatives (8 equilibrium conditions times the 6 variables

of F ). Since each dimension of F is equal to zero for all possible values of st, their derivatives

must also be equal to zero. Therefore, once we substitute the steady-state values and forget

about the exogenous processes (which we do not need to solve for), we have a quadratic system

of 36 equations on 36 unknowns: Vi;ss, ci;ss, ii;ss, ki;ss, li;ss, and R
f
i;ss for i 2 f1; : : : ; 6g : One

of the solutions is an unstable root of the system that violates the transversality condition of

the problem and we eliminate it. Thus, we keep the solution that implies stability.

To �nd the second-order approximation, we take derivatives on the �rst derivatives of the

function F , again with respect to the states and the perturbation parameter:

Fij (0) = 0 for i; j 2 f1; : : : ; 6g :
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This step gives us a new system of equations. Then, we plug in the terms that we already

know from the steady state and from the �rst-order approximation and we get that the only

unknowns left are the second-order terms of the value function and other functions of interest.

Quite conveniently, this system of equations is linear and it can be solved quickly. Repeating

these steps (taking higher-order derivatives, plugging in the terms already known, and solving

for the remaining unknowns), we can get any arbitrary order approximation. For simplicity,

and since we checked that we were already obtaining a high accuracy, we decided to stop at

a third-order approximation (we are particularly interested in applying the perturbation for

estimation purposes and we want to document how a third-order approximation is accurate

enough for many problems without spending too much time deriving higher-order terms).

3.2. Projection

Projection methods take basis functions to build an approximated value function and decision

rules that minimize a residual function de�ned by the augmented equilibrium conditions of

the model. There are two popular methods for choosing basis functions: �nite elements and

the spectral method. We will present only the spectral method for several reasons: �rst, in

the neoclassical growth model the decision rules and value function are smooth and spectral

methods provide an excellent approximation. Second, spectral methods allow us to use a

large number of basis functions, with the consequent high accuracy. Third, spectral methods

are easier to implement. Their main drawback is that since they approximate the solution

with a spectral basis, if the decision rules display a rapidly changing local behavior or kinks,

it may be di¢ cult for this scheme to capture those local properties.

Our target is to solve the decision rule for labor and the value function flt; Vtg from:

H(lt; Vt) =

264 uc;t � �
�
EtV 1�

t+1

� 1
�
�1 Et

�
V

(1�)(��1)
�

t+1 uc;t+1

�
�ezt+1k��1t+1 l

1��
t+1 + 1� �

��
Vt �

h
(1� �)(c�t (1� l�t ))

1�
� + �Et(V 1�

t+1 )
1
�

i �
1�

375 = 0
where, to save on notation, we de�ne Vt = V (kt; zt; �t) and:

uc;t =
1� 

�
�

�
c�t (1� lt)

1��� 1��
ct

Then, from the static condition

ct =
�

1� �
(1� �)eztk�t l

��
t (1� lt)
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and the resource constraint, we can �nd ct and kt+1.

Spectral methods solve this problem by specifying the decision rule for labor and the value

function flt; Vtg as linear combinations of weighted basis functions:

l(kt; zj; �m; �) = �i�
l
ijm i(kt)

V (kt; zj; �m; �) = �i�
V
ijm i(kt)

where f i(k)gi=1;:::;nk are the nk basis functions that we will use for our approximation along
the capital dimension and � = f�lijm; �Vijmgi=1;:::;nk;j=1;:::;J ;m=1;::;M are unknown coe¢ cients to

be determined. In this expression, we have discretized the stochastic processes �t for volatility

and zt for productivity using Tauchen�s (1986) method as follows. First, we have a grid of

M points G� = fe�1 ; e�2; :::; e�Mg for �t and a transition matrix �M with generic element

�Mi;j = Prob (e�t+1 = e�j je�t = e�i). The grid covers 3 standard deviations of the process in

each direction. Then, for each M point, we �nd a grid with J points Gm
z = fzm1 ; zm2 ; :::; zmJ g

for zt and transition matrixes �J;m with generic element �
J;m
i;j = Prob

�
zmt+1 = zmj jzmt = zmi

�
.

Again, and conditional on e�m, the grid covers 3 standard deviations in each direction. Values

for the decision rule outside the grids G� and Gm
z can be approximated by interpolation. We

make the grids for zt depend on the level of volatility m to adapt the accuracy of Tauchen�s

procedure to each conditional variance (although this forces us to interpolate when we switch

variances). Since we set J = 25 and M = 5; the approximation is quite accurate along

the productivity axis (we explored other choices of J and M to be sure that our choice was

sensible).

A common choice for the basis functions are Chebyshev polynomials because of their

�exibility and convenience. Since their domain is [-1,1], we need to bound capital to the set

[k; k], where k (k) is chosen su¢ ciently low (high) to bind only with extremely low probability,

and de�ne a linear map from those bounds into [-1,1]. Then, we set  i(kt) = e i(�k(kt)) wheree i(�) are Chebyshev polynomials and �k(kt) is the linear mapping from [k; k] to [-1,1].

By plugging l(kt; zj; �m; �) and V (kt; zj; �m; �) intoH(lt; Vt), we �nd the residual function:

R(kt; zj; �m; �) = H(l(kt; zj; �m; �); V (kt; zj; �m; �))

We determine the coe¢ cients � to get the residual function as close to 0 as possible. However,

to do so, we need to choose a weight of the residual function over the space (kt; zj; �m). A

collocation point criterion delivers the best trade-o¤ between speed and accuracy (Fornberg,

1998) by making the residual function exactly equal to zero in fkignki=1 roots of the nk-th
order Chebyshev polynomial and in the Tauchen points (also, by the Chebyshev interpolation
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theorem, if an approximating function is exact at the roots of the nk�th order Chebyshev
polynomial, then, as nk !1, the approximation error becomes arbitrarily small). Therefore,
we just need to solve the following system of nk � J �M � 2 equations:

R(ki; zj; �m; �) = 0 for any i; j;m collocation points

on nk�J�M�2 unknowns �. We solve this system with a Newton method and an iteration
based on the increment of the number of basis functions. First, we solve a system with only

three collocation points for capital and 125 (125 = 25 � 5) points for technology. Then, we
use that solution as a guess for a system with more collocation points for capital (with the

new coe¢ cients being guessed to be equal to zero) and iterate on the procedure. We stop the

iteration when we have 11 polynomials in the capital dimension (therefore, in the last step we

solve for 2; 750 = 11� 25� 5� 2 coe¢ cients). The iteration is needed because otherwise the
residual function is too cumbersome to allow for direct solution of the 2; 750 �nal coe¢ cients.

3.3. Value Function Iteration

Our �nal solution method is VFI. Since the dynamic algorithm is well known, our presentation

is most brief. Consider the following Bellman operator:

TV (kt; zt; �t) = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�� + �
�
EtV 1� (kt+1; zt+1; �t+1)

� 1
�

� �
1�

s.t. ct + kt+1 = eztk�t l
1��
t + (1� �) kt

zt = �zt�1 + e�t"t, "t � N (0; 1)

�t = (1� �)� + ��t�1 + �!t, !t � N (0; 1) :

To solve for this Bellman operator, we de�ne a grid on capital, Gk = fk1; k2; :::; kMg, a
grid on volatility and on the productivity level. The grid on capital is just a uniform dis-

tribution of points over the capital dimension. As we did for projection, we set a grid

G� = fe�1 ; e�2; :::; e�Mg for �t and a transition matrix �M for volatility and M grids Gm
z =

fzm1 ; zm2 ; :::; zmJ g for zt and transition matrixes �J;m using Tauchen�s (1986) procedure. The
algorithm to iterate on the value function for this grid is:

1. Set n = 0 and V 0(kt; zt; �t) = c�ss (1� lss)
1�� for all kt 2 Gk and all zt 2 Gz.
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2. For every fkt; zt; �tg; use the Newton method to �nd c�t , l�t , k�t+1 that solve:

ct =
�

1� �
(1� �)eztk�t l

��
t (1� lt)

(1� �) �

�
c�t (1� lt)

1��� 1��
ct

= �
�
Et
�
V n
t+1

�1�� 1
�
�1
Et
h�
V n
t+1

��
V n
1;t+1

i
ct + kt+1 = eztk�t l

1��
t + (1� �)kt

3. Construct V n+1 from the Bellman equation:

V n+1 = ((1� �)(c��t (1� l�t )
1��)

1�
� + �(Et(V (k�t+1; zt+1; �t+1)1�))

1
� )

�
1�

4. If jV
n+1�V nj
jV nj � 1:0e�7, then n = n+ 1 and go to 2. Otherwise, stop.

To accelerate convergence and give VFI a fair chance, we implement a multigrid scheme

as described by Chow and Tsitsiklis (1991). We start by iterating on a small grid. Then,

after convergence, we add more points to the grid and recompute the Bellman operator using

the previously found value function as an initial guess (with linear interpolation to �ll the

unknown values in the new grid points). Since the previous value function is an excellent

grid, we quickly converge in the new grid. Repeating these steps several times, we move from

an initial 23,000-point grid into a �nal one with 375,000 points (3,000 points for capital, 25

for productivity, and 5 for volatility).

4. Calibration

We now select a benchmark calibration for our numerical computations. We follow the

literature as closely as possible and select parameter values to match, in the steady state, some

basic observations of the U.S. economy (as we will see below, for the benchmark calibration,

the means of the ergodic distribution and the steady-state values are nearly identical). We set

the discount factor � = 0:991 to generate an annual interest rate of around 3.6 percent. We

set the parameter that governs labor supply, �= 0:357, to get the representative household

to work one-third of its time. The elasticity of output to capital, � = 0:3; matches the labor

share of national income. A value of the depreciation rate � = 0:0196 matches the ratio of

investment-output. Finally, � = 0:95 and log � = 0:007 are standard values for the stochastic

properties of the Solow residual. For the SV process, we pick � = 0:9 and � = 0:06; to

match the persistence and standard deviation of the heteroskedastic component of the Solow

residual during the last 5 decades.
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[Table 1 here]

Since we want to explore the dynamics of the model for a range of values that encompasses

all the estimates from the literature, we select four values for the parameter that controls

risk aversion, , 2, 5, 10, and 40, and two values for EIS  , 0.5, and 1.5, which bracket most

of the values used in the literature (although many authors prefer smaller values for  , we

found that the simulation results for smaller  �s do not change much from the case when

 = 0:5). We then compute the model for all eight combinations of values of  and  , that is

f2; 0:5g, f5; 0:5g, f10; 0:5g, and so on. When  = 0:5 and  = 2, we are back in the standard
CRRA case. However, in the interest of space, we will report only a limited subset of results

that we �nd are the most interesting ones.

We pick as the benchmark case the calibration f;  ; log �; �g = f5; 0:5; 0:007; 0:06g.
These values re�ect an EIS centered around the median of the estimates in the literature, a

reasonably high level of risk aversion, and the observed volatility of productivity shocks. To

check robustness, we increase, in the extreme case, the risk aversion, the average standard de-

viation of the productivity shock, and the standard deviation of the innovations to volatility

to f;  ; log �; �g = f40; 0:5; 0:021; 0:1g. This case combines levels of risk aversion that are in
the upper bound of all estimates in the literature with huge productivity shocks. Therefore,

it pushes all solution methods to their limits, in particular, making life hard for perturbation

since the interaction of the large precautionary behavior induced by  and large shocks will

move the economy far away from the deterministic steady state. We leave the discussion of

the e¤ects of  = 1:5 for the robustness analysis at the end of the next section.

5. Numerical Results

In this section we report our numerical �ndings. First, we present and discuss the computed

decision rules. Second, we show the results of simulating the model. Third, we report the

Euler equation errors. Fourth, we discuss the e¤ects of changing the EIS and the perturbation

point. Finally, we discuss implementation and computing time.

5.1. Decision Rules

Figure 1 plots the decision rules of the household for consumption and labor in the benchmark

case. In the top two panels, we plot the decision rules along the capital axis when zt = 0

and �t = �. The capital interval is centered on the steady-state level of capital of 9.54 with

a width of �40%; [5.72,13.36]. This interval is big enough to encompass all the simulations.
We also plot, with two vertical lines, the 10 and 90 percentile of the ergodic distribution of
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capital.4 Since all methods provide nearly indistinguishable answers, we observe only one

line in both panels. It is possible to appreciate miniscule di¤erences in labor supply between

second-order perturbation and the other methods only when capital is far from its steady-

state level. Monotonicity of the decision rules is preserved by all methods.5 We must be

cautious, however, mapping di¤erences in choices into di¤erences in utility. The Euler error

function below provides a better view of the welfare consequences of di¤erent approximations.

In the bottom two panels, we plot the decision rules as a function of �t when kt = kss

and zt = 0: Both VFI and Chebyshev polynomials capture well precautionary behavior: the

household consumes less and work more when �t is higher. In comparison, it would seem that

perturbations do a much poorer job at capturing this behavior. However, this is not the right

interpretation. In a second-order perturbation, the e¤ect of �t only appears in a term where

�t interacts with zt. Since here we are plotting a cut of the decision rule while keeping zt = 0,

that term drops out and the decision rule that comes from a second-order approximation is a

�at line. In the third-order perturbation, �t appears by itself, but raised to its cube. Hence,

the slope of the decision rule is negligible. As we will see below, the interaction e¤ects of �t
with other variables, which are hard to visualize in two-dimensional graph, are all that we

need to deliver a satisfactory overall performance.

[Figure 1 here]

We see bigger di¤erences in the decision rules as we increase the risk aversion and the

variance of innovations. Figure 2 plots the decision rules for the extreme calibration following

the same convention than before. In this �gure, we change the capital interval where we

compute the top decision rules to [3,32] (roughly 1/3 and 3 times the steady-state capital)

because, owing to the high variance of the calibration, the equilibrium paths �uctuate through

much wider ranges of capital.

[Figure 2 here]

We highlight several results. First, all the methods deliver similar results in our original

capital interval for the benchmark calibration. Second, as we go far away from the steady

state, VFI and the Chebyshev polynomial still overlap with each other (and, as shown by

4There is the technical consideration of which ergodic distribution to use for this task, since this is an
object that can only be found by simulation. All over the paper, we use the ergodic simulation generated
by VFI. We checked that the results are robust to using the ergodic distributions coming from the other
methods.

5Similar �gures could be plotted for other values of zt and �t. We omit them because of space
considerations.
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our Euler error computations below, we can roughly take them as the �exact� solution),

but second- and third-order approximations start to deviate. Third, the decision rule for

consumption approximated by the third-order perturbation changes from concavity into con-

vexity for values of capital bigger than 15. This phenomenon (also documented in Aruoba et

al. 2006) is due to the poor performance of local approximation when we move too far away

from the expansion point and the polynomials begin to behave wildly. Numerically, this issue

is irrelevant because the problematic region is visited with nearly zero probability.

5.2. Simulations

Applied economists often characterize the behavior of the model through statistics from

simulated paths of the economy. We simulate the model, starting from the deterministic

steady state, for 10,000 periods, using the decision rules for each of the eight combinations

of risk aversion and EIS discussed above. To make the comparison meaningful, the shocks

are common across all paths. We discard the �rst 1,000 periods as a burn-in to eliminate

the transition from the deterministic steady state of the model to the middle regions of the

ergodic distribution of capital. This is usually achieved in many fewer periods than the ones

in our burn-in, but we want to be conservative in our results. The remaining observations

constitute a sample from the ergodic distribution of the economy.

For the benchmark calibration, the simulations from all of the solution methods generate

almost identical equilibrium paths (and therefore we do not report them). We focus instead

on the densities of the endogenous variables as shown in �gure 3 (remember that volatility and

productivity are identical across the di¤erent solution methods). Given the low risk aversion

and SV of the productivity shocks, all densities are roughly centered around the deterministic

steady-state value of the variable. For example, the mean of the distribution of capital is only

0.2 percent higher than the deterministic value. Also, capital is nearly always between 8.5

and 10.5. This range will be important below to judge the accuracy of our approximations.

[Figure 3 here]

Table 2 reports business cycle statistics and, because DSGE models with recursive pref-

erences and SV are often used for asset pricing, the average and variance of the (quarterly)

risk-free rate and return on capital. Again, we see that nearly all values are the same, a

simple consequence of the similarity of the decision rules.

[Table 2 here]

The welfare cost of the business cycle is reported in table 3 in consumption equivalent

terms. The computed costs are actually negative. Besides the Jensen�s e¤ect on average
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productivity, this is also due to the fact that when we have leisure in the utility function,

the indirect utility function may be convex in input prices (agents change their behavior over

time by a large amount to take advantage of changing productivity). Cho and Cooley (2000)

present a similar example. Welfare costs are comparable across methods. Remember that the

welfare cost of the business cycle for the second- and third-order perturbations is the same

because the third-order terms all drop or are zero when evaluated at the steady state.

[Table 3 here]

When we move to the extreme calibration, we see more di¤erences. Figure 4 plots the

histograms of the simulated series for each solution method. Looking at quantities, the

histograms of consumption, output, and labor are the same across all of the methods. The

ergodic distribution of capital puts nearly all the mass between values of 6 and 15. This

considerable move to the right in comparison with �gure 3 is due to the e¤ect of precautionary

behavior in the presence of high risk aversion, large productivity shocks, and high SV. Capital

also visits low values of capital more than in the benchmark calibration because of large,

persistent productivity shocks. In any case, the translation is more pronounced to the right

than to the left.

[Figure 4 here]

Table 4 reports business cycle statistics. Di¤erences across methods are minor in terms

of means (note that the mean of the risk-free rate is lower than in the benchmark calibration

because of the extra accumulation of capital induced by precautionary behavior). In terms of

variances, the second-order perturbation produces less volatility than all other methods. This

suggests that a second-order perturbation may not be good enough if we face high variance of

the shocks and/or high risk aversion. A third-order perturbation, in comparison, eliminates

most of the di¤erences and delivers nearly the same implications as Chebyshev polynomials

or VFI.

[Table 4 here]

Finally, table 5 presents the welfare cost of the business cycle. Now, in comparison with

the benchmark calibration, the welfare cost of the business cycle is positive and signi�cant,

slightly above 1.1 percent. This is not a surprise, since we have both a large risk aversion and

productivity shocks with an average standard deviation three times as big as the observed

one. All methods deliver numbers that are close.

[Table 5 here]
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5.3. Euler Equation Errors

While the plots of the decision rules and the computation of densities and business cycle sta-

tistics that we presented in the previous subsection are highly informative, it is also important

to evaluate the accuracy of each of the procedures. Euler equation errors, introduced by Judd

(1992), have become a common tool for determining the quality of the solution method. The

idea is to observe that, in our model, the intertemporal condition:

uc;t = �(EtV 1�
t+1 )

1
�
�1Et

�
V

(�1)(1��)
�

t+1 uc;t+1R (kt; zt; �t; zt+1; �t+1)

�
(4)

where R (kt; zt; �t; zt+1; �t+1) = 1+�ezt+1k
��1
t+1 l

1��
t+1 �� is the gross return of capital given states

kt; zt; �t; and realizations zt+1 and �t+1 should hold exactly for any given kt, and zt. However,

since the solution methods we use are only approximations, there will be an error in (4) when

we plug in the computed decision rules. This Euler equation error function EEi (kt; zt; �t) is

de�ned, in consumption terms:

EEi (kt; zt; �t) = 1�

264�(Et(V it+1)1�) 1��1Et
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�
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(1��) 1�
�
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1

�
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�
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This function determines the (unit free) error in the Euler equation as a fraction of the

consumption given the current states and solution method i. Following Judd and Guu (1997),

we can interpret this error as the optimization error incurred by the use of the approximated

decision rule and we report the absolute errors in base 10 logarithms to ease interpretation.

Thus, a value of -3 means a $1 mistake for each $1000 spent, a value of -4 a $1 mistake for

each $10,000 spent, and so on.

[Figure 5 here]

Figure 5 displays a transversal cut of the errors for the benchmark calibration when

z = 0 and �t = �. Other transversal cuts at di¤erent technology and volatility levels reveal

similar patterns. The �rst lesson from �gure 5 is that all methods deliver high accuracy. We

know from �gure 3 that capital is nearly always between 8.5 and 10.5. In that range, the

(log10) Euler equation errors are at most -5, and most of the time they are even smaller.

For instance, the second- and third-order perturbations have an Euler equation error of

around -7 in the neighborhood of the deterministic steady state, VFI of around -6.5, and
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Chebyshev an impressive -11/-13. The second lesson from �gure 5 is that, as expected,

global methods (Chebyshev and VFI) perform very well in the whole range of capital values,

while perturbations deteriorate as we move away from the steady state. For second-order

perturbation, the Euler error in the steady state is almost four orders of magnitude smaller

than on the boundaries. Third-order perturbation is around half an order of magnitude more

accurate than second-order perturbation over the whole range of values (except in a small

region close to the deterministic steady state).

There are two complementary ways to summarize the information from Euler equation

error functions. First, we report the maximum error in our interval (capital between 60

percent and 140 percent of the steady state and the grids for productivity and volatility).

The maximum Euler error is useful because it bounds the mistake owing to the approximation.

The second procedure for summarizing Euler equation errors is to integrate the function with

respect to the ergodic distribution of capital and productivity to �nd the average error. We

can think of this exercise as a generalization of the Den Haan�Marcet test (Den Haan and

Marcet, 1994). The top- left panel in Figure 6 reports the maximum Euler error (darker bars)

and the integral of the Euler error for the benchmark calibration. Both perturbations have

a maximum Euler error of around -2.7, VFI of -3.1, and Chebyshev, an impressive -9.8. We

read this result as indicating that all methods perform adequately. Both perturbations have

roughly the same integral of the Euler error (around -5.3), VFI a slightly better -6.4, while

Chebyshev polynomials do fantastically well at -10.4 (the average loss of welfare is $1 for each

$500 billion). But even an approximation with an average error of $1 for each $200,000, such

as the one implied by third-order perturbation, must su¢ ce for most relevant applications.

[Figure 6 here]

We repeat our exercise for the extreme calibration. As we did when we computed the

decision rules of the agents, we have changed the capital interval to [3,32]. The top-right panel

in Figure 6 reports maximum Euler equation errors and their integrals. The maximum Euler

equation error is large for perturbation methods while it is rather small using Chebyshev

polynomials. However, given the very large range of capital used in the computation, this

maximum Euler error provides a too negative view of accuracy. We �nd the integral of the

Euler equation error to be more instructive. With a second-order perturbation, we have -4.02

and with a third-order perturbation we have -4.12. To evaluate this number, remember that

we have extremely high risk aversion and large productivity shocks. Even in this challenging

environment, perturbations deliver a high degree of accuracy. VFI does not display a big loss

of precision compared to the benchmark case. On the other hand, Chebyshev polynomials

deteriorate somewhat, but the accuracy it delivers it is still of $1 out of each $1 million spent.
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5.4. Robustness: Changing the EIS and Changing the Perturbation Point

In the results we reported above, we kept the EIS equal to 0.5, a conventional value in

the literature, while we modi�ed the risk aversion and the volatility of productivity shocks.

However, since some researchers prefer higher values of the EIS (see, for instance, Bansal and

Yaron, 2004, a paper that we have used to motivate our investigation), we also computed our

model with  = 1:5. Basically our results were unchanged. To save on space, we concentrate

only on the Euler equation errors (decision rules and simulation paths are available upon

request). In the bottom-left panel in Figure 6, we report the maxima of the Euler equation

errors and their integrals with respect to the ergodic distribution. The relative size and

values of the entries in this table are quite similar to the values reported for the benchmark

calibration (except, partially, VFI that performs a bit better). The bottom-right panel in

Figure 6 repeats the same exercise for the extreme calibration. Again, the entries in the table

are very close to the ones in the extreme calibration (and now, VFI does not perform better

than when  = 0:5).

As a �nal robustness test, we computed the perturbations not around the deterministic

steady state (as we did in the main text), but around a point close to the mode of the ergodic

distribution of capital. This strategy, if perhaps di¢ cult to implement because of the need

to compute the mode of the ergodic distribution,6 could deliver better accuracy because we

approximate the value function and decision rules in a region where the model spends more

time. As we suspected, we found only trivial improvements in terms of accuracy. Moreover,

expanding at a point di¤erent from the deterministic steady state has the disadvantage that

the theorems that ensure the convergence of the Taylor approximation might fail (see theorem

6 in Jin and Judd, 2002).

5.5. Implementation and Computing Time

We brie�y discuss implementation and computing time. For the benchmark calibration,

second-order perturbation and third- order perturbation algorithms take only 0.02 second

and 0.05 second, respectively, in a 3.3GHz Intel PC with Windows 7 (the reference computer

for all times below), and it is simple to implement: 664 lines of code in Fortran 95 for second

order and 1133 lines of code for third order, plus in both cases, the analytical derivatives

of the equilibrium conditions that Fortran 95 borrows from a code written in Mathematica

6For example, the algorithm of �nding a perturbation around the steady state, simulate from it, �nd a
second perturbation around the model of the implied ergodic simulation, and so on until convergence, may
not settle in any �xed point. In our exercise, we avoid this problem because we have the ergodic distribution
implied by VFI. This is an unfair advantage for perturbations at the mode of the ergodic distribution but it
makes our point below about the lack of improvement in accuracy even stronger.

25



6.7 The code that generates the analytic derivatives has between 150 to 210 lines, although

Mathematica is much less verbose. While the number of lines doubles in the third order,

the complexity in terms of coding does not increase much: the extra lines are mainly from

declaring external functions and reading and assigning values to the perturbation coe¢ cients.

An interesting observation is that we only need to take the analytic derivatives once, since

they are expressed in terms of parameters and not in terms of parameter values. This allows

Fortran to evaluate the analytic derivatives extremely fast for new combinations of parameter

values. This advantage of perturbation is particularly relevant when we need to solve the

model repeatedly for many di¤erent parameter values, for example, when we are estimating

the model. For completeness, the second-order perturbation was also run in Dynare (although

we had to use version 4.0, which computes analytic derivatives, instead of previous versions,

which use numerical derivatives that are not accurate enough for perturbation). This run

was a double-check of the code and a test of the feasibility of using o¤-the-shelf software to

solve DSGE models with recursive preferences.

The projection algorithm takes around 300 seconds, but it requires a good initial guess

for the solution of the system of equations. Finding the initial guess for some combination of

parameter values proved to be challenging. The code is 652 lines of Fortran 95. Finally, the

VFI code is 707 lines of Fortran 95, but it takes about ten hours to run.

6. Conclusions

In this paper, we have compared di¤erent solution methods for DSGE models with recursive

preferences and SV. We evaluated the di¤erent algorithms based on accuracy, speed, and

programming burden. We learned that all of the most promising methods (perturbation,

projection, and VFI) do a fair job in terms of accuracy. We were surprised by how well sim-

ple second-order and third-order perturbations perform even for fairly non-linear problems.

We were impressed by how accurate Chebyshev polynomials can be. However, their compu-

tational cost was higher and we are concerned about the curse of dimensionality. In any case,

it seems clear to us that, when accuracy is the key consideration, Chebyshev polynomials

are the way to go. Finally, we were disappointed by VFI since even with 125,000 points in

the grid, it only did marginally better than perturbation and it performed much worse than

Chebyshev polynomials in our benchmark calibration. This suggests that unless there are

compelling reasons such as non-di¤erentiabilities or non-convexities in the model, we better

avoid VFI.

7We use lines of code as a proxy for the complexity of implementation. We do not count comment lines.
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A theme we have not developed in this paper is the possibility of interplay among dif-

ferent solution methods. For instance, we can compute extremely easily a second-order ap-

proximation to the value function and use it as an initial guess for VFI. This second-order

approximation is such a good guess that VFI will converge in few iterations. We veri�ed this

idea in non-reported experiments, where VFI took one-tenth of the time to converge once we

used the second-order approximation to the value function as the initial guess. This approach

may even work when the true value function is not di¤erentiable at some points or has jumps,

since the only goal of perturbation is to provide a good starting point, not a theoretically

sound approximation. This algorithm may be particularly useful in problems with many state

variables. More research on this type of hybrid method is a natural extension of our work.

We close the paper by pointing out that recursive preferences are only one example of a

large class of non-standard preferences that have received much attention by theorists and

applied researchers over the last several years (see Backus, Routledge, and Zin, 2004). Having

fast and reliable solution methods for this class of new preferences will help researchers to sort

out which of these preferences deserve further attention and to derive empirical implications.

Thus, this paper is a �rst step in the task of learning how to compute DSGE models with

non-standard preferences.
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Table 1: Calibrated Parameters

Parameter � � � � � log � � �

Value 0.991 0.357 0.3 0.0196 0.95 0.007 0.9 0.06

28



Table 2: Business Cycle Statistics - Benchmark Calibration

c y i Rf (%) Rk(%)

Mean

Second-Order Perturbation 0.7253 0.9128 0.1873 0.9070 0.9078

Third-Order Perturbation 0.7257 0.9133 0.1875 0.9062 0.9069

Chebyshev Polynomial 0.7256 0.9130 0.1875 0.9063 0.9066

Value Function Iteration 0.7256 0.9130 0.1875 0.9063 0.9066

Variance (%)

Second-Order Perturbation 0.0331 0.1084 0.0293 0.0001 0.0001

Third-Order Perturbation 0.0330 0.1079 0.0288 0.0001 0.0001

Chebyshev Polynomial 0.0347 0.1117 0.0313 0.0001 0.0001

Value Function Iteration 0.0347 0.1117 0.0313 0.0001 0.0001
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Table 3: Welfare Costs of Business Cycle - Benchmark Calibration

2nd-Order Pert. 3rd-Order Pert. Chebyshev Value Function

-2.0864e(-5) -2.0864e(-5) -3.2849e(-5) -3.2849e(-5)
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Table 4: Business Cycle Statistics - Extreme Calibration

c y i Rf (%) Rk(%)

Mean

Second-Order Perturbation 0.7338 0.9297 0.1950 0.8432 0.8562

Third-Order Perturbation 0.7344 0.9311 0.1955 0.8416 0.8529

Chebyshev Polynomial 0.7359 0.9329 0.1970 0.8331 0.8402

Value Function Iteration 0.7359 0.9329 0.1970 0.8352 0.8403

Variance (%)

Second-Order Perturbation 0.2956 1.0575 0.2718 0.0004 0.0004

Third-Order Perturbation 0.3634 1.2178 0.3113 0.0004 0.0005

Chebyshev Polynomial 0.3413 1.1523 0.3425 0.0005 0.0006

Value Function Iteration 0.3414 1.1528 0.3427 0.0005 0.0006
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Table 5: Welfare Costs of Business Cycle - Extreme Calibration

2nd-Order Pert. 3rd-Order Pert. Chebyshev Value Function

1.1278e-2 1.1278e-2 1.2855e-2 1.2838e-2
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Figure 1: Decision Rules - Benchmark Calibration.
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Figure 2: Decision Rules - Extreme Calibration.
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Figure 3: Densities - Benchmark Calibration.
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7. Appendix

In this appendix, we present the steady state of the model and the alternative perturbation

approach, the value function perturbation (VFP).

7.1. Steady State of the Model

To solve the system:

Vss = c�ss (1� lss)
1���

�k��1ss l1��ss + 1� �
�
= 1=�

1� �

�

css
(1� lss)

= (1� �)k�ssl
��
ss

mssR
f
ss = 1=�

css + iss = k�ssl
1��
ss

iss = �kss

note �rst that:
kss
lss
=

�
1

�

�
1

�
� 1 + �

�� 1
��1

= 


Now, from the leisure-consumption condition:

css
1� lss

=
�

1� �
(1� �) 
� = �) css = �(1� lss)

Then:

css + �kss = k�ssl
1��
ss = 
�lss ) css =

�

� � �


�
lss

and:

� (1� lss) =
�

� � �


�
lss )

lss =
�


� � �
 + �

kss =
�



� � �
 + �

from which we can �nd Vss and iss.
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7.2. Value Function Perturbation (VFP)

We mentioned in the main text that instead of perturbing the equilibrium conditions of

the model, we could directly perturb the value function in what we called value function

perturbation (VFP). To undertake the VFP, we write the value function as:

V (kt; zt; �t;�) = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�� + �EtV 1� (kt+1; zt+1; �t+1;�)
1
�

� �
1�

To �nd a second-order approximation to the value function, we take derivatives of the value

function with respect to controls (ct; lt), states (kt; zt; �t), and the perturbation parameter �.

We collect these 6 equations, together with the resource constraint, the value function itself,

and the exogenous processes in a system:

eF (kt; zt; �) = 0
where the hat over F emphasizes that now we are dealing with a slightly di¤erent set of

equations than the F in the main text.

After solving for the steady state of this system, we take derivatives of the function eF
with respect to kt, zt, �t, and �:

eFi (kss; 0; �ss; 0) = 0 for i = f1; 2; 3; 4g
and we solve for the unknown coe¢ cients. This solution will give us a second-order approx-

imation of the value function but only a �rst-order approximation of the decision rules. By

repeating these steps n times, we can obtain the n+1-order approximation of the value func-

tion and the n-order approximation of the decision rules. It is straightforward to check that

the coe¢ cients obtained by ECP and VFP are the same. Thus, the choice of one approach

or the other should be dictated by expediency.
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